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The new expression r3p ~ ----- g(o)) (BN q- Bve- ~ is proposed for the three-phonon 
scattering relaxation rate, considering contributions due to three-phonon normal and 
umklapp processes, which give a new approach to the lattice thermal conductivity. 
With use of the above expression, the lattice thermal conductivity of Ge has been 
calculated in the entire temperature range 2--1000 K: good agreement is found 
between the experimental and calculated values of the phonon conductivity in the entire 
temperature range of investigation. Analytical expressions are also obtained to calcu- 
late an approximate value of the lattice thermal conductivity. The role of four-phonon 
processes is also included in the present study. 

Phonon-phonon scattering plays a very important role in the calculation of  the 
lattice thermal conductivity of  an insulator, but even at present we lack an exact 
analytical expression for it. On account of  the complex structure of  the Brillouin 
Zone and the strong temperature-dependence of  the phonon distribution function, 
the relaxation times have a complicated dependence on the phonon frequency 
and the temperature. For  practical purpose, it is necessary to express the relaxa- 
tion rate by simple relations. The phonon-phonon scattering processes can be 
divided into two groups: normal processes (N-processes), in which momentum 
is conserved, and umklapp processes (U-processes), in which momentum is not 
conserved. Several workers [ 1 - 8 ]  have studied both processes, to calculate the 
phonon conductivities of  different samples [ 9 -  13], and have given simple expres- 
sions for the three-phonon scattering relaxation rate for both processes. However, 
the contributions of  both N-processes and U-processes have not been considered 
in the same integral before, due to their complicated roles. Keeping in view all 
such expressions and considering the contributions of  the N and U-processes, 
we have proposed an expression for the three-phonon scattering relaxation rate 
z~ah = g(a)) (B N + Bue-~ to calculate the phenon conductivity of  an 
insulator (terms are explaincd below). For the first time, an expression for z~  1 
is proposed to calculate the phonon conductivity, which includes the contributions 
of  the N and U-processes in the same integral and in the entire temperature range, 
as well as in the entire range of  frequency of the Brillouin Zone. 

To examine the applicability of  the proposed expression, the lattice thermal 
conductivity of  Ge is calculated in the entire temperature range 2 -  1000 K. The 
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role o f  four -phonon  processes [ 1 4 -  16] is also incorpora ted  in the present  calcula- 
t ions.  G o o d  agreement  is ob ta ined  between the calcula ted and exper imenta l  values 
o f  the p h o n o n  conduct ivi ty  in the entire t empera ture  range. Analy t ica l  expressions 
are also ob ta ined  to calculate an approx imate  value o f  the p h o n o n  conduct ivi ty  
using the above expression for  T - 1  first in the absence and then in the presence 3ph~ 

of  four -phonon  processes.  

Three-phonon scattering relaxation rate 

The th ree -phonon  scat ter ing processes domina te  over o ther  prccesses at high 
temperatures .  These processes are not  negligibly small  at low tempera tures  and 
they p lay  an impor t an t  role even in the region o f  the conduct ivi ty  maxima.  It  is 
difficult to express %p~ by a simple relat ion,  due to the compl ica ted  structure of  the 
Bri l louin Zone  and the s t rong tempera ture-dependence  o f  the phonon  dis t r ibut ion  
function.  Several workers  have calcula ted approx imate  expressions fcr  ~ 1 .  
These expressions are l isted in Table 1. Their  results suggest differences for t rans-  
verse and longi tudinal  phonons .  F r o m  Table 1, it  is clear tha t  the frequency- 

Table 1 

Relaxation times. In these expressions B's are constant, L is the Casimir length of the crystal, 
V is the atomic volume, fi is the atomic fraction of the i th impurity whose mass is m~, m is the 
mass of the host lattice atom, Am = m -- rn~, vs is the average phonon velocity, qmax is the 

Zone boundary of the crystal lattice 

Scat ter ing processes Re laxa t ion  rates 

Crystal boundary a zff 1 vs/L 

V ~i fi(Am/m)2 Impurities b (mass difference) r~ 1 A co ~, A = ~ . 

Three phonon "r~-p~ 
Normal process c (N-processes) T3. h,-I N 

TransverseL~ ~{-'{~' = BrcoT~BLo)2TZ ] at low temperatures 
T,N 

Longitudinal ~ ,~ = Bs ] 
Transverse ~-i  = B~zo)T J at high temperatures 

T,N 
Umklapp processes (U-processes) T~l,u 
Klemens d r~l  = Buo92T3e-O/~T ] at low temperatures 
Klemens e TU 1 Buo)T3e -~ / 

o) 2 
1 Holland~ r~S 1 = Bru ~-qmax to qmax 

sinh (ho)/kBT) 
zr~ 1 = 0 0 to qmax 

Callaway g "rr51 = Buo)2T 3 
Klemensg TU 1 = Bfzw"-T at high temperatures 

a Ref. 33 c Ref. 1 e Ref. 2 g Ref. 5 
b Ref. 4 d Ref. 3 f Ref, 7 h Ref. 2 
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dependence of  z~o~ is co for a transverse phonon, and co 2 for a longitudinal 
phonon (an exception is the Callaway expression [5], because he has not consid: 
ered different modes of  phonons; his expression is valid for a longitudinal 
phonon only). The expression for z~X-umklapp processes contains an exponen- 
tial term. It  is also found that the Herring [1 ] relation for % ~  is true at extremum 
temperatures only. 

Several workers [17 -23]  have incorporated these relaxation rates to calculate 
the phonon conductivities of  insulators, considering that at high temperatures 
U-processes dominate over N-processes, and at low temperatures N-processes 
dominate over U-processes. Therefore, previoias workers have considered only one 
process, either z ~ - n o r m a l  or z ~ - u m k l a p p ,  in one conductivity integral. The 
combined relaxation rates, z2 ~ used by them are listed in Table 2. It is found that 

Table 2 

Combined scattering relaxation rate. In these expressions 0)D is the Debye frequency, O is 
the Debye temperature, ~ot and 0)2 are transverse phonon frequency at �89 and qmax, a)a and 

co 3, are the same for longitudinal phonon and ~ is a constant 

C o m b i n e d  re laxa t ion  ra te  F r e q u e n c y  r a n g e  

Callaway a 
H011and b 

Joshi and 
Verma e 

SDV model d 

Present work 

T e l  = T ~ I  ._[_ ~'~1 + ( B  1 ._[_ B I ) 0 ) 2 T  3 0 - -  co D 

"r~,T 1 = "r~ "1 -b  T ~  1 -[- B r N 0 ) T  a 0 - -  0) 1 
0) 2 

"rc'-rl = "cffl + TP~t + B T u  s i n h  ( h 0 ) / k B T )  c~ - -  0)2 

T - 1  ---- -- "{- BL.~0)ZT z 0 - -  o9 3 e,L Tff I -[- Tpt 1 
T--1 c,T = TB 1 -[- T~ 1 "[- B T  ~  0 - -  0) 2 

T~,L 1 = TB -1 + T ~  1 + B L 0 ) 2 T  m 0 - -  0)3 

(m = 1, 2, 3 and 4 depends on temperature ranges) 
v~,,~ = r ~  1 + r~t 1 + BT,I0)TmT(r),I  e -O/sT 0 - -  co s 
"r~.. t = "eft 1 + Tpt I + B L  lxog2TmL,II(T)e -O /~T  0 - -  0) 3 
~" BL j0 )2TmL, I (T )e -O/~T"  
T - I  e,T = TB 1 + rPt  1 + (BTN + BTUe--O/=T) o )Tm 0 - -  0)~. 
T--lc,L = TB 1 "q- Zpt 1 -  -~- (BLN "q- B L u e - O / ~ T ) 0 ) 2 T  m 0 - -  0)3 

a Ref. 5 
b Ref. 7 

e Re~ 36 and 40 
a Re~ 31, 37, 38 and 39 

U-processes dominate over N-processes at high temperatures, while the reverse 
is true at low temperatures. However, the probability of  any one of  them does 
not vanish at any temperature. Keeping in view all such expressions listed in 
Table 1, we have proposed art expression fo r - - z~  as the combined relaxation 
rate of  N and U-processes. 

-1 is given by The three-phonon normal scattering relaxation rate Z~ph,N 

Z ~ , N  = B N g ( O ) ) T  m ( 1 )  

and for U-processes it is given by 

- 1  B u g ( e ) ) e -  ~  (2) T 3ph,  U ---- 
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where B N and Bu are the scattering strengths of three-phonon N and U-processes, 
respectively, (9 i f  theDebye t.~emperature, a is a constant depending on the crystal 
structure, g(co) is the frequency-dependence of  z ~  its value being co and co2 for 
transverse and longitudinal phonons, respectively, and m is the temperature 
exponent. We have considered the same value of  m for both processes, due to the 
fact that Guthrie's [8] calculations show equal temperature exponents for N and 
U-processes. The value of  m can be calculated with the help of Guthrie's expression 
as  

m = 2Xmax (e x max -- 1) -1 + Xmax (3) 

where Xmax = (h COmax,T,L)/(kBT), ks  is the Boltzmann constant, h is the Planck 
constant divided by 2 7r, and T and L as suffixes refer to transverse and longitudinal 
phonons, respectively. Therefore, the combined relaxation rate for r3~ can be 
given as 

-- --1 --1 = (BN + B u e -  ~ (4) T3p 1 = T 3ph,N "~- T 3ph,U 

Thus, the combined relaxation rate ~-~ for transverse phonons can be given as 

Zc 1 = "~ b 1 + "C pt 1 -'[- (BTN + BTUe-- O/aT)Tmco (5) 

Table 3 

Combined relaxation rate used in the present calculations 

Expression Temperature range 

C o m b i n e d  
rff 1 + Ao~ 4 
rff 1 + A~o 4 
Tff I + A(o 4 

z~x + A~o4 

relaxation rate for transverse phonon rU,~ 
+ (BTN + BTU e-O/~T)coT 4 + BHTOO2TZ T < 22 
+ (BTN x + BTUXe-O/~T)ogT 3 + BHTO.~2T 2 22 < T < 28 
-t- (BTN2 -t- BTUze-O/~T)o~T z Jv BHTO32T2 28 < T < 42 
-F- (BTN 3 "[- BTU3e-O/~ -[- BHT 0)2T2 T > 42 

Combined relaxation rate for longitudinal phonon z -1 c,L 

,~1..~ Atoll dr. (BLN .q_ BLue-O/~T)co2T,~..F BHLCO2T2 T <  65 
Tff 1 + Aw t --~ (BLN 1 + BLule-O/~T)co2T3o~ -}- BHLmZT 2 65 < T <  83 
TBI-F" Aw t -F" (BLN 2 -}- BLU2e-OmT)w2T2-F BFIL~2T 2 83 < T <  124 
~.~1 _{_ Ao94 -F" (BLN3 q- BLU3e--OI*tT) c02T -F BFIL~O2T 2 T >  124 

The three phonon scattering strengths are related as a 

BTXl ----- 22 BTX , BLXl = 65 BLX 
Brx2 = 28 Bxx 1 , BLxz ----- 83 BLxl 
BTx8 = 42 Brx~, BLX 3 = 124 BLX 2 
X stands for N and U 

a Ref. 36 
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and for longitudinal phonons as 

~.~1 = "/7 B 1 + T ~-~1 -I" (BLN "I- BLue -- ~ (6) 

where z~ 1 and z~ 1 are the boundary and defect scattering relaxation rates, re- 
spectively, and expressions are given in Table 1. In writing the above equations, 
it is considered that other scatterers of phonons are absent. The values of m are 
1, 2, 3 and 4, corresponding to different temperature ranges, as stated in Table 3. 

The importance of four-phonon processes is studied by Pomeranchuk [14-16], 
and it is found that at high temperature these play an important role [19, 24] in 
the calculation of the phonon conductivity. The scattering relaxation rate for 
them is given by 

"C ~p~ = BHco2T  2 (7) 

where BH is the four-phonon scattering strength. Therefore, the combined scat- 
tering relaxation rate used in the present study is given by 

T ~ I  = "17 ~1 =~_ T ~ I  ..~ 27 3pl h -3 t- T 4p/h (8)  

The corrrplete expression for the combined scattering relaxation rate is stated 
in Table 3. 

Phonon conductivity integral 

Considering the role of N-processes, Callaway [5] expressed the lattice thermal 
conductivity as the sum of two terms. One term (which we will refer to as the 
first term) consists of a single integral containing the combined scattering relaxa- 
tion rate, while the second term (usually referred to as a correction term due to 
the N-processes) has a much more complicated form. However, Callaway and 
others [25, 26] have shown that the contribution of the correction term towards 
the total phonon conductivity is usually very small (exceptions are solid He [6] 
and LiF [27]) compared to the first term at low temperatures. It is also found 
that the contribution of the correction term is very small at high temperatures 
[28] even in the frame of the generalized Callaway integral [29, 30]. Therefore, 
we can neglect the contribution of the correction term in the entire temperature 
range. Considering the spherical symmetry of the Brillouin Zone (i.e. out of three 
polarization branches, one is longitudinal and two are transverse) and the fact 
that each phonon contributes separately towards the total phonon conductivity, 
the contribution of each branch can be expressed as 

Ki = (1/6z~ 2) S zcv~i(h2coZ/kBT2)( e~~ - 1)--2e("O/knr)q 2 dq (9) 

where the integral is performed over the first Brillouin Zone. Vg i is the group 
velocity corresponding to the polarization branch under study, q is the phonon 
wave vector corresponding to the phonon frequency co. Callaway has taken q = 
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= co/v to express the above integral as a phonon frequency term, which is a crude 
approximation. 

Following Verma et al. [24, 31] we have taken the better dispersion relation 
q = (1 + rco2)(co/v) to express q in terms of co in Eq. (9), where r is a constant 
calculated with the help of  the dispersion curve. It is also found that the velocity 
of  phonons in the entire Brillouin Zone does not remain constant. Therefore, 
we have taken different velocities in the ranges 0 to qmax/2, and qmax/2 to qmax" qm~x 
is the phonon wave vector at the Brillouin Zone. Thus, one can express the phonon 
conductivity integral as 

K = K T + KL (10) 

where KT and KL are the contributions of transverse and longitudinal phonons, 
respectively, and are given by 

o~ 

KT = (C/YT1) S "Cc,1Xt eX(eX - 1)-2 (1 + Rlx2T2) 2 (1 + 3 RIX2T2) -1 dx + 
0 

0~ 

+ (C/VT2) ; Ze,TX4eX(e x -  1)-2(1 + R2xZT2)Z(1 + 3R2x2T2)-ldx 
Ox 

(11) 

04 
T 

KL = (C]2vrl) S zc, Lx~ex(ex - 1)-2(1 + R4xZT~)Z(1 + 3 R4xeT~)-ldx + 
0 

Os 
T 

+ (C]2VLz) ; ze, Lx~eX(e ~ -  1)-z(1 + RaxZT2)2(1 + 3 Rax2T2)-ldx (12) 
04 

= (z - -1~  - 1  : where C = (KB/37z2)(KBT/h) ~, Ri = ri(KB/h) ~, i = 1, 2, 3 and 4, zr , o,i, , 1 = T 
and L. VT1 and VT2 are the transverse phonon velocities in the range 0 -  1/2qmax and 
1/2qmax - qmax, respectively, VL1 and VL2 are the same for longitudinal phonons, 
0i = (hcoi/kB), i = 1, 2, 3 and 4, col and co~ are the frequencies of  transverse and 
longitudinal phonons, respectively, at 1/2qmax and 092 and con are the same at 

z -1 and ;c~,~ are the combined relaxation rates for transverse and 1ongi- qmax~ c,T 
tudinal phonons, as given ill Table 3. The above conductivity integral is evaluated 
to find out analytical expressions in the high temperature approximations. 

At high temperatures, 02/T and 03/T are very small quantities. Therefore, x ~ 1 
and x~eX(e x - 1) -2 reduces to unity, and the conductivity integral can be evalu- 
ated in the above approximations. The obtained expressions are as f611ows: 

A) > > 
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KT = (C/v~aaT)[X 2 - (R1/4)X 4 - (5 R~/6)X 6 - ( D / ~ ) { X  5 - (R1/7)X 7 - (5 R~/9)X 9} 
- (r 3 -- (R1/5)X 5 - (5 R~/7)XT}] + (C/3 R2VT2~)[1/3 In (02/01) + (5 R2[6)Y "~ + 
+ (R2/4)Y  ~ + (R2/6)Y -~ - (D/~){(1 /9)Y  3 + (Rz /3)Y  5 + (R2/7)Y 7 - (Rz /3)Y  } - 

P r {Y/3 (5 R2/9)Ya+ (5 R2/5)Y 5 (13) - ( n / T )  + + + 

K{. = 1L~2 VL~aL)[XI . . . .  (D/3 ~)X~ (~/s + (C/2 VL2~)[Y1 (R3/3)Y2 I~aY~2 ~ _ 
- (D/aL){Y~/3 - (R3 /5)Y  ~ - (5 R~/7)Y~} - (~/#t){Y1 - (Rz/3)Y~ - RaY~}] (14) 

(B) If  "c~p~ > T~t;~ > ~1 ,  the above expression reduces to 

K T  ---- - ( R 1 / 3 ) X  - 5 - { X 3 / 3  - ( R 1 / 5 ) X  5 - 

- (5RZ/7)X 7 } - (q/~) {in X - (R1/2)X 2 - (5 R~/4)X a} ] + (C/3 R~VT2~) [(5 R z / 3 ) Y  + 
+ (R2/3)Y  3 - (R2/9)Y -3  - Y-1/3 - (D /~ ) {Y /3  + (5 R2/9)Y 3 + (R~/5)Y 5 + 

+ (R2/3)Y -1}  - (PT/~){(5 R2/3 ) In (02/01) + ( R ~ / 2 ) y 2 +  ( R 2 / 1 2 ) Y - ' -  Y-~/6}] (15) 

KL = (C/2VLI~)[XI(1 - ~Je) - (D/3 #s)X~] + (Cf2 VL2Pn)[{Za -- ( R 3 / 3 ) Y ~ -  
- ( R 2 1 5 ) Y ~ }  {(1 - ~/Pn)} - (D/~){Y~/3  - ( R 3 / 5 ) Y ~ -  (5 RZz/7)YT~}] (16) 

where 

X = 01IT, X i  -~ 04IT, }zn = {(02/~T)n __ (O1/r)n}, y~ = {(03/7)n _ (0,//~/)'} 
D = A(kBT /h )  4, ~ = BI~(kBTZ/h) 2 

B e - ~  /h~T m+l = (BT~ + TU ~ ),  ~, , , ~ = (BLN + BLue-~  ~+~ 

where n is any integer and m = 1, 2, 3 and 4. 

Appl i ca t ion  to Ge 

To see the result of  the above-proposed expression for z~-~, the entire calculation 
is made for Ge. The constant regarding the dispersion curve is calculated with the 
help of the experimental curve [32]. As far as boundary and point defect scatter- 
ing strengths are concerned, they do not need any adjustment for Ge. The value 
of Casimir's length [33] of the crystal L and the point defect scattering strength 
A are taken from the previous report of Holland [7]. The temperature exponent 
m is calculated with the help of Eq. (3), separately for both modes, whereas Tiwarf 
and Agrawal [37] have taken equal values of rn for both modes. As far as the 
three-phonon scattering strength is concerned, this involves complications due 
to the fact that we have included both N and U-processes. Previous workers have 
considered only one type of process in one integral. As we know, at low tempera- 

-1 Keeping in view the above ideas, BTN and BLN -1 dominates over %ph,v. t u r e s  Tgph, N 

are adjusted at 20 K (a temperature near the conductivity maxima), ignoring the 
contribution of three-phonon U-processes. The tbree-phonon U-processes domi- 
nate over N-processes at high temperature. Therefore, one can assume that the 
probabilities of N and U-processes are equal at room temperature. Thus, B r v  and 
BLU a r e  calculated at 300 K with the help of the relation -1 -1 %ph,U = %;~,N. Consider- 
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ing  the  ro le  o f  U-p roces se s  also,  BTN a n d  BLN are f inal ly a d j u s t e d  at  20 K .  W e  

c a n  say  t h a t  in  the  p r e s e n t  ca l cu l a t ion  t o o  we  have  on ly  one  a d j u s t i n g  p a r a m e t e r  

f o r  Z~p~ fo r  b o t h  m o d e s .  K n o w i n g  the  va lue  o f  the  t h r e e - p h o n o n  sca t t e r i ng  

s t r e n g t h ,  the  p h o n o n  c o n d u c t i v i t y  o f  Ge  is c a l cu l a t ed :  s o m e  d i s c r e p a n c i e s  are  

Table 4 

The constant and parameters used in the analysis of phonon conductivity of Ge in the 
temperature range 2--1000 K 

(VT0o<~,<o,, = 3.55 X 105 cm/sec (VT~)o~,<~<~o~ = 1.30 X 10 ~ cm/sec 
(vs = 4.92 X 10 ~ cm/sec (VLz)o,,<,o<~,3 = 2.46 X 10 ~ cm/sec 

r 1 = 2.95X10-2rsec z r~ = 8.28X10-27sec 2 
r4 = 0 r3 -~ 1 .13x l0 -2 r sec  2 
01 = 9 0 K  02 = 108K 
04 = 208K 03 ----- 319K 
0 = 376 K 

= 2.0 
zffl = 1.96x10 Gsec - t  
A = 2.40x 10 -44 sec 3 
BTN = 1.12X 10 - i t  deg -~ 
BTU = 2.10X 10 -11 deg -~ 
BLN = 2.50X 10 -2~ sec deg -4 
Bt.o = 4.69x 10 -~a sec deg -4 
Brrr = 6.88x10 -2~ secdeg -2 
BHL ---: 6.88X 10 -2a sec deg -2 

A 

~ 10.0~ 
s.o I -  

2. 

1.0 

0.5 

0.2 

0 5 10 20 50 100 200 500 '000 ~"  
TemDerciture ~ 

Fig. 1. Phonon conductivity of Ge in the temperature range 2-- 1000 K. K T is the transverse 
phonon contribution and KL the longitudinal phonon contribution. Solid line indicates cal- 

culated values. Circles are experimental points 
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found at temperatures beyond 500 K. These discrepancies are balanced by in- 
cluding the role of four-phonon processes and the four-phonon scattering strength 
is adjusted at 500 K. The analytical expressions reported in the present paper are 
very useful to calculate an approximate value of the scattering strength, as well as 
the phonon conductivity. 

The constants and parameters used in the present analysis are listed in Table 4. 
Using these constants and parameters, the phonon conductivity of Ge is calculated 

in-the-entire temperature range 2-1000 K by calculating the separate contributions 
of the transverse and longitudinal phonons, and is shown in Fig. 1. The percentage 

A 

t- 

o- 2o~- / /  
OL/  I __J 

200 400 
I r I F  

600 8OO 1000 
TemperQture ~ K 

Fig. 2. Percentage contributions of three-phonon N and U-processes towards three-phonon 
scattering relaxation rate. Solid line is percentage of T -1 and dotted line is percentage of 3ph~ N 

contributions of the three-phonon N and U scattering relaxation rates towards 
the three-phonon scattering relaxation rate are also calculated, to study the domi- 
nating nature of one over the other in the temperature range 10- 1000 K, and they 
are shown in Fig. 2. 

From Fig. Z-it-can be concluded that at low temperatures the contribution 
of U-processes is negligibly small compared to that of N-processes, whereas the U 
dominate over the N-processes at high temperatures. However, the contribution of 
N-processes is not very small at high temperature. It is nearly 35 % at 1000 K. 
From Fig. 1, one can see that the agreement between the experimental and calcu- 
lated values of the phonon conductivity is excellent in the entire temperature range 
2 -  1000 K, whereas Verma et al. [30] could not get good agreement in the vicinity 
of the conductivity maxima. 

D i s c u s s i o n  

The expression proposed for z~p~ = ( B  L + B v e - ~  �9 #(o~)T m shows very 
good results at high as well as at low temperatures. At low temperatures 0/c~ T >> 1, 
which results in z~p~ = "C3ph, N-1 = B N g ( m ) T  m due to very small value of e -~ 
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232 DUBEY, MISHO: LATTICE THERMAL CONDUCTIVITY 

This shows that our  proposed expression for z~,~ reduces at low temperature to an 
expression for the three-phonon N-processes scattering relaxation rate z~ ,N.  
Thus, the proposed new expression indicates the dominat ing nature o f  N-processes 
at low temperatures. At  high temperatures, the percentage contr ibut ion o f  -1 Tgph,U 
is as high as 65 ~ (at 1000 K), which reveals the dominat ing nature o f  U-processes 
over N-processes. As far as intermediate temperatures are concerned, these can 
be studied with the help o f  Fig. 2. Thus, for the first time, we have incorporated 
the contr ibution o f  bo th  N and U-processes in the entire temperature range, as 
well as in the entire frequency range of  the Brillouin Zone (0 to cOmax), to calculate 
the phenon conductivity o f  an insulator. The value o f  the temperature exponent  
rn is calculated for bo th  modes, whereas Tiwari and Agrawal  used equal values o f  
m for bo th  polarization branches. F r o m  Fig. 1, it cart be seen that  at high tempera- 
tures the entire heat is t ransported by transverse phonons  alone, which is similar 
to the previous findings o f  other workers. At  the same time, it can also be seen 
that  the agreement between calculated and experimental values is excellent at 
high as well as at low temperatures. The temperature exponent  used in the proposed 
expression also follows Guthrie 's  limit [8, 35] for three-phonon scattering relaxa- 
t ion rates. 
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work. One of us (KSD) is also grateful to Prof. G. S. Verma for his interest in the present 
work. 
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R/~SUMI~ -- On a propos6 la nouvelle expression ~ == g(m)(BN -q- Bue-~ m qui con- 
stitue une approximation nouvelle ~t la conductivit6 thermique des r6seaux. On a calcul6 
ainsi, en incorporant  cette expression, la conductivit6 thermique du r6seau de germa- 
n ium dans tout  l ' intervalle de temp6ratures compris entre 2 et 1000 K. Un  bon  accord a 
6t6 observ6 entre les valeurs calcul6es et exp6rimentales pour  la conducfivit6 des phonons  
dans tout  l ' intervalle de temp6ratures 6tudi6. On a 6galement obtenu des expressions analyti- 
ques pour  le calcul de la valeur approch6e de la conductivit6 thermique dn r6seau. Le r61e 
des processus h quatre phonons est 6galement inclus dans la pr6sente 6rude. 

ZUSAMMENFASSUNG - -  Der neue Ausdruck ~:3~ = g(~o)(B~ + B c e - ~  m wird f/Jr die 
Drei-Phonon-Streuungs-Relaxationsgeschwindigkeit  vorgeschlagen, welche Drei-Phonon- 
Normal-  und Umklapp-Prozesse ber/.icksichtigt. Daraus ergibt sich eine neue Ann~iherung 
zur W~irmeleitf/ihigkeit von Gittern. DuTch obigen Ausdruck wurde die W/~rmeleitf/ihigkeit 
von Ge im Temperaturbereich yon 2 bis 1000 K berechnet und eine gute f ' lbereinstimmung 
der berechneten und Versuchswerte der Phononleitf~thigkeit im untersuchten Temperatur- 
bereich gefunden. Analytische Ausdrficke k6nnen auch ffir die Berechnung eines N/iherungs- 
wertes der W~irmeleitf~higkeit des Gitters erhalten werden. Die Rolle des Vier-Phonon-Vor- 
ganges wird ebenfalls mit behandelt.  

Pe3roMe - -  IIpe~nomeuo noBoe abipa~eHne Ta~ ~ = g(to) (B  N -b B u e - ~  m ann cKopocTa 
penaKcaurm Tpex~oHOHHOFO paccenuaz, yqI, ITlaIBa~l BK~a~BI, o6yc~IOBYleHHBIe TpeMH HopMaYlBHI, I- 
MItI ( I ~ O H O H H I a I M H  npotteccaMr~ rI npoHeccaMH nepe6poca, ~ro aaeT HOBOe nprt6ar~menne ~nn pe- 
meTo~mo~ TepMI, ItleCKO~ HpOBO~YIMOCTH. C HOMOILEblO 3TOFO BI,Ipa~KeHH~ ~blyla BI, ItlI, ICYleHa 
pemeTo~ma~ TepM~YecKan npOBO~HMOCT~, repMaHHn BO 13ce.~ TeMuepaTypno~ o6aacTrt 2~1000K 
n Ha~eHo xopomee co13rla~eHrIe M e ~ y  13blqI,IC.rIeHHBIMH I~I 9Kcnep~LMeHTa~BHI, IM~I 3nanei~rmM~ 
xepMn~ecKo~ npOBO~KMOCTH 130 Bce~ !~ICC.qe~oBaHHO,~ TeMrlepaTypHo~ O6Y~aCTH. rlozlyqeHr~ 
rar~re aHa~rITn~IecKHe 13~,~pa~enr~I ~ s  13blqJzlC.r/eHH~l npn6s~rL~en~ioro 3HaqeHH~ petueTo~tno~ 
TepMnqec~o~ HpOBO,/~HMOCTH. B HacTostt~ee HBy~ienne BKYUOHeHa TaKme po~B ~eTbIpexqbOUOHHBIX 
npottecco13. 
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