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The new expression 75, = g(@) (By + Bye™ ®*T)T™ is proposed for the three-phonon
scattering relaxation rate, considering contributions due to three-phonon normal and
umklapp processes, which give a new approach to the lattice thermal conductivity.
With use of the above expression, the lattice thermal conductivity of Ge has been
calculated in the entire temperature range 2—1000 K: good agreement is found
between the experimental and calculated values of the phonon conductivity in the entire
temperature range of investigation. Analytical expressions are also obtained to calcu-
late an approximate value of the lattice thermal conductivity. The role of four-phonon
processes is also included in the present study.

Phonon-phonon scattering plays a very important role in the calculation of the
lattice thermal conductivity of an insulator, but even at present we lack an exact
analytical expression for it. On account of the complex structure of the Brillouin
Zone and the strong temperature-dependence of the phonon distribution function,
the relaxation times have a complicated dependence on the phonon frequency.
and the temperature. For practical purpose, it is necessary to express the relaxa-
tion rate by simple relations. The phonon-phonon scattering processes can be
divided into two groups: normal processes (N-processes), in which momentum
is conserved, and umklapp processes (U-processes), in which momentum is not
conserved. Several workers [1—8] have studied both processes, to calculate the
phonon conductivities of different samples [9—13], and have given simple expres-
sions for the three-phonon scattering relaxation rate for both processes. However,
the contributions of both N-processes and U-processes have not been considered
in the same integral before, due to their complicated roles. Keeping in view all
such expressions and considering the contributions of the N and U-processes,
we have proposed an expression for the three-phonon scattering relaxation rate
Topn = g(@) (Bx + Bye ®“T)T™, to calculate the phonon conductivity of an
insulator (terms are explaincd below). For the first time, an expression for tg,#
is proposed to calculate the phonon conductivity, which includes the contributions
of the N and U-processes in the same integral and in the entire temperature range,
as well as in the entire range of frequency of the Brillouin Zone.

To examine the applicability of the proposed expression, the lattice thermal
conductivity of Ge is calculated in the entire temperature range 2— 1000 K. The
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224 DUBEY, MISHO: LATTICE THERMAL CONDUCTIVITY

role of four-phonon processes [14 —16] is also incorporated in the present calcula-
tions. Good agreement is obtained between the calculated and experimental values
of the phonon conductivity in the entire temperature range. Analytical expressions
are also obtained to calculate an approximate value of the phonon conductivity
using the above expression for 34, first in the absence and then in the presence
of four-phonon processes.

Three-phonon scattering relaxation rate

The three-phonon scattering processes dominate over other prccesses at high
temperatures. These processes are not negligibly small at low temperatures and
they play an important role even in the region of the conductivity maxima. It is
difficult to express 5,5, by a simple relation, due to the complicated structure of the
Brillouin Zone and the strong temperature-dependence of the phonon distribution
function. Several workers have calculated approximate expressions for 7,k
These expressions are listed in Table 1. Their results suggest differences for trans-
verse and longitudinal phonons. From Table 1, it is clear that the frequency-

Table 1

Relaxation times. In these expressions B’s are constant, L is the Casimir length of the crystal,

V is the atomic volume, f;is the atomic fraction of the i impurity whose mass is m;, m is the

mass of the host lattice atom, dm = m — m;, vs is the average phonon velocity, ¢y, 1S the
Zone boundary of the crystal lattice

Scattering processes Relaxation rates
Crystal boundary?® 75* vg/L
i . 14
Impurities® (mass difference) 7! Awt, 4= i Z F(dmjm)?
s g

Three phonon 754
Normal process® (N-processes) 75,4, N

S >, o oy -
Longitudinal LN BT at low temperatures
Transverse 71h = BrowT*
Longitudinal 1Lk = B{o*T -
’ at high temperatures
Transverse 174 = BioT £ P
Umklapp processes (U-processes) Tiho
Klemens? 15! = Byw?T%e~9T at low temperatures
Klemens® 15! = BywT%~94T
602
Holland® ol= By ———— i to
U S (oolkyT) 7 Qmax Imax
gt = 0 10 gmax
Callaway® 751 = Byw?T?
Klemens® 75! = Biw*T at high temperatures
2 Ref. 33 ¢ Ref. 1 ¢ Ref. 2 g Ref. 5
b Ref. 4 4 Ref. 3 F Ref. 7 b Ref. 2
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dependence of 73} is @ for a transverse phonon, and ® for a longitudinal
phonon (an exception is the Callaway expression [ 5], because he has not consid-
ered different modes of phonons; his expression is valid for a longitudinal
phonon only). The expression for 7;;-umklapp processes contains an exponen-
tial term. It is also found that the Herring [1] relation for 73, is true at extremum
temperatures only.

Several workers [17—23] have incorporated these relaxation rates to calculate
the phonon conductivities of insulators, considering that at high temperatures
U-processes dominate over N-processes, and at low temperatures N-processes
dominate over U-processes. Therefore, previous workers have considered only one
process, either 73 -normal or t3-umklapp, in one conductivity integral. The
combined relaxation rates, 7, * used by them are listed in Table 2. It is found that

Table 2

Combined scattering relaxation rate. In these expressions wp, is the Debye frequency, ® is
the Debye temperature, w; and w, are transverse phonon frequency at }g,.x and gy, @, and
wy are the same for longitudinal phonon and « is a constant

Combined relaxation rate Frequency range
Callaway® ol =131+ 3t + (B, + BpowiT? 0 — wp
Holland® 11 = 75! + 13t + BrnoT? 0— o
w2
-1 _ -1 -14 B A —_
Tex =75 + T + Bru sinh (hao/kyT) W — W,
Tol = 78t + 7ot + Brao®T? 0— w,
Joshi and 14 =13+ 15t + ByoT™ 0— w,
Verma® 1ot =151 + 15t + BLotT™ 0— w,
(m=1,2,3 and 4 depends on temperature ranges)
SDV model® 77} = 75! + 75! + BroT™T®,1 =91 0— w,
T;II, — T]—?:l + T;tl + BL'szTmL,H(T)e‘O/“T 0 — wy
+ BLIwZTmL’I(T)e-@/nT
Present work v = v5l + 75! + (Biw + Brye~ ¥ NewT™ 0— w,
ot =75 + 75t + (Buw + Broe o™ 0— o
2 Ref. 5 ¢ Refs 36 and 40
b Ref. 7 4 Refs 31, 37, 38 and 39

U-processes dominate over N-processes at high temperatures, while the reverse
is true at low temperatures. However, the probability of any one of them does
not vanish at any temperature. Keeping in view all such expressions listed in
Table 1, we have proposed an expression for-7zy; as the combined relaxation
rate of ¥ and U-processes.

The three-phonon normal scattering relaxation rate 75y,  is given by

Taph,n = Bng(@)T” 1)
and for U-processes it is given by
T son,u= Bug(w)e™ O TT™ #))
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where By and By, are the scattering strengths of three-phonon N and U-processes,
respectively, © is the Debye temperature, a is a constant depending on the crystal
structure, g(w) is the frequency-dependence of 75}, its value being w and ® for
transverse and longitudinal phonons, respectively, and m is the temperature
exponent. We have considered the same value of m for both processes, due to the
fact that Guthrie’s [8] calculations show equal temperature exponents for N and
U-processes. The value of m can be calculated with the help of Guthrie’s expression
as

M = X (" max — D™ 4 X0x ?3)

where X5 = (b Wy 11)/(ksT), kg is the Boltzmann constant, % is the Planck
constant divided by 2 n, and T and L as suffixes refer to transverse and longitudinal
phonons, respectively. Therefore, the combined relaxation rate for 7, can be
given as

Togh = Tiphn + Timu = (Bx + Bue ™ " Ng(@)T™ 4)
Thus, the combined relaxation rate 7;* for transverse phonons can be given as
‘L’;l =T b—l + T;tl + (Byn + Brue™ @laT)me (5)

Table 3

Combined relaxation rate used in the present calculations

Expression Temperature range

Combined relaxation rate for transverse phonon 7;{

15+ Aot + (Bry + Bry e ®*NoT* + ByrotT? T< 22
131 + Aw? + (Bryy + Brue®*DoT? + Byro®T? 2< T< 28
751 + Awt + (Brne + Bruse~®*DwT? + Byro®T? < T< 42
151 + Aw 4+ (Brns + Bruse ¥ NwT + Byro?T? T> 42

Combined relaxation rate for longitudinal phonon 77!

151 4 Aw* + (Bin + Biy e~ T)w?T* 4 By 0?T? T< 65

151 4+ Aot + By + Biuie ?*NotT3w + By 0?T? 65 < T< 83
151 4 Aw* 4+ (Byne + Bruse~ 9" Dw?T? + By T2 83 < T< 124
151 + Aw? + (Bins + Bruse %" Nw?T + By T2 T> 124

The three phonon scattering strengths are related as?

Bryy = 22 Bry , Bixy = 65 Brx
Brxs = 28 Brxy, Bixs = 83 By
Brxg = 42 Brgy, Bixs = 124 Bix,
X stands for N and U

2 Ref. 36
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and for longitudinal phonons as

' =15 + Ty + (Bun + BLue” NI (6)

where 13" and ;' are the boundary and defect scattering relaxation rates, re-

spectively, and expressions are given in Table 1. In writing the above equations,
it is considered that other scatterers of phonons are absent. The values of m are
1, 2, 3 and 4, corresponding to different temperature ranges, as stated in Table 3.

The importance of four-phonon processes is studied by Pomeranchuk {14 —16],
and it is found that at high temperature these play an important role [19, 24] in
the calculation of the phonon conductivity. The scattering relaxation rate for
them is given by

T i = Bu'T? 0

where By is the four-phonon scattering strength. Therefore, the combined scat-
tering relaxation rate used in the present study is given by

_ — — -1 —
TC1=1131+Tptl+T3ph+T4p1h (8)

The complete expression for the combined scattering relaxation rate is stated
in Table 3.

Phonon conductivity integral

Considering the role of N-processes, Callaway [5] expressed the lattice thermal
conductivity as the sum of two terms. One term (which we will refer to as the
first term) consists of a single integral containing the combined scattering relaxa-
tion rate, while the second term (usually referred to as a correction term due to
the N-processes) has a much more complicated form. However, Callaway and
others [25, 26] have shown that the contribution of the correction term towards
the total phonon conductivity is usually very small (exceptions are solid He [6]
and LiF [27]) compared to the first term at low temperatures. It is also found
that the contribution of the correction term is very small at high temperatures
[28] even in the frame of the generalized Callaway integral [29, 30]. Therefore,
we can neglect the contribution of the correction term in the entire temperature
range. Considering the spherical symmetry of the Brillouin Zone (i.e. out of three
polarization branches, one is longitudinal and two are transverse) and the fact
that each phonon contributes separately towards the total phonon conductivity,
the contribution of each branch can be expressed as

K = (1/6712) S chéi(thZ/kBTQ)(ehw/ka . 1)—2e(nw/kBT)q2 dq (9)

where the integral is performed over the first Brillouin Zone. vy is the group
velocity corresponding to the polarization branch under study. ¢ is the phonon
wave vector corresponding to the phonon frequency w. Callaway has taken g =

6* J. Thermal Anal. 12, 1977



228 DUBEY, MISHO: LATTICE THERMAL CONDUCTIVITY

= w/fv to express the above integral as a phonon frequency term, which is a crude
approximation.

Following Verma et al. [24, 31] we have taken the better dispersion relation
y=(+ ro®)(w/v) to express ¢ in terms of w in Eq. (9), where r is a constant
calculated with the help of the dispersion curve. It is also found that the velocity
of phonons in the entire Brillouin Zone does not remain constant. Therefore,
we have taken different velocities in the ranges 0 t0 ¢u,,,/2, 80d Grmax/2 10 Grax: Fmax
is the phonon wave vector at the Brillouin Zone. Thus, one can express the phonon
conductivity integral as

K=K+ Ky, (10)

where Kt and K are the contributions of transverse and longitudinal phonons,
respectively, and are given by

2}
T
Kr = (Clop) [ teax*ee* — D72(1 + RFPTH (1 + 3 R*TH M dx +
0
LA

T
+ (Clord) | teaxe (€ — D721 + RX*T?*(1 4+ 3 RTH M dx (1)
6,

T

04
T
Ki = (Cl2vp) [ tepxte(e* — )72(1 + RX*TP (1 + 3 RX*TH Mdx +
0

kil
T

+ (Cl2v1y) | torxte™(e® — 72(1 + ReX* TP (1 + 3 R* T M dx  (12)
0q

T

where C = (Kg/3n3)(KgT[h), R; = r(Kg/h)% i = 1,2,3 and4,7.; = (x;}) ™ j=T
and L. vy and vr, are the transverse phonon velocities in the range 0— 1/2¢,,,, and
1/2¢max — Gmax» TeSpectively, vy, and vy, are the same for longitudinal phonons,
0, = (haykg), i = 1, 2, 3 and 4, w, and w, are the frequencies of transverse and
longitudinal phonons, respectively, at 1/2¢... and ®, and wj are the same at
dmaxs Tor and 7Tf are the combined relaxation rates for transverse and longi-
tudinal phonons, as given in Table 3. The above conductivity integral is evaluated
to find out analytical expressions in the high temperature approximations.

At high temperatures, 6,/T and 8,/T are very small quantities. Therefore, x < 1
and x%¢*(e* — 1)~ reduces to unity, and the conductivity integral can be evalu-
ated in the above approximations. The obtained expressions are as follows:

A) If toh > toh > Tt

J. Thermal Anal. 12, 1977
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Kr = (ClopD[X* — (R/AX"* ~ (5 RiJO)X® — (DIPD{X° — (RyDX" — (SR9)X°}
= (DX~ (RYHX° = (SRYDX"}] + (CJ3 Rywp,D)[1/3 In (6,/6) + (5 R,[6)Y* +

+ (RJOY" + (Rf6)Y 2 - (DD{(1/9)Y* + (Ryf3)Y° + (R DY — (Ryf3)Y} —

— GDYB + G RDYE + S RY® + (Ry/3)Y ] (13)

K ={CR2ouD)[X; — (D3 DXL — G/DX] + (C2 D)V — (Ref3)YT — R3YT —
— DID{YI3 = (RefS)Y7 — S RYDYT} — @DV — Re/Y] — RY7}]  (14)

(B) If 154 > Toph > Tpr» the above expression reduces to

Kr = (Clor)(/WIX — (Ry3)X® ~ RIX® — (D {X*3 — (Ry5)X* —

~ BRYNX"} — 1/ {In X — (RYDX® — (5 RYDX'}] + (C/3 Rywrof) [(5 RyJ3)Y +
+ RV’ — (Ry/NY™° — Y73 — (DIR){Y]3 + (5 Ry/NY® + (RE[5)Y° +

+ (Rf3)Y ) — (/{5 Re/3) In (6,/6) + (R32)Y? + (R,[12)Y™* — Y~¥6}] (15)

Ki = (Cou)Xy(1 ~ £/8) — (D)3 XT] + (C)2 v, [{Y; — (Re[3)YF —
— (RHYIHA — £/} — D {YI3 — (Re/Y ~ (5 RYDY]}] (16)

where

X =0T, Xy =0,T, Y"={6/T)" — O/T)"}, Yi = {(0:/T)" — (0,7}
D = A(kBT/h)4= 1% = BH(kBTz/h)2

% = (Brx + Brue _;@ /“T)(kn/ T+, { = (Bix + BLUe_olaT)(kB/ h)zT 2

where n is any integer and m = 1, 2, 3 and 4.

Application to Ge

To see the result of the above-proposed expression for 73, the entire calculation
is made for Ge. The constant regarding the dispersion curve is calculated with the
help of the experimental curve [32]. As far as boundary and point defect scatter-
ing strengths are concerned, they do not need any adjustment for Ge. The value
of Casimir’s length [33] of the crystal L and the point defect scattering strength
A are taken from the previous report of Holland [7]. The temperature exponent
m is calculated with the help of Eq. (3), separately for both modes, whereas Tiwari
and Agrawal [37] have taken equal values of m for both modes. As far as the
three-phonon scattering strength is concerned, this involves complications due
to the fact that we have included both N and U-processes. Previous workers have
considered only one type of process in one integral. As we know, at low tempera-
tures 73, n dominates over ta; - Keeping in view the above ideas, By and B 5
are adjusted at 20 K (a temperature near the conductivity maxima), ignoring the
contribution of three-phonon U-processes. The three-phonon U-processes domi-
nate over N-processes at high temperature. Therefore, one can assume that the
probabilities of N and U-processes are equal at room temperature. Thus, Bry and
B, y are calculated at 300 K with the help of the relation 15}, y = 735}, . Consider-
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230 DUBEY, MISHO: LATTICE THERMAL CONDUCTIVITY

ing the role of U-processes also, Bry and By are finally adjusted at 20 K. We
can say that in the present calculation too we have only one adjusting parameter
for 75} for both modes. Knowing the value of the three-phonon scattering
strength, the phonon conductivity of Ge is calculated: some discrepancies are

Table 4

The constant and parameters used in the analysis of phonon conductivity of Ge in the
temperature range 2—1000 K

("1)o<w<w, = 3.55X 10° cm/sec (19w <w<w, = 1.30X 10° cm/sec
(i< wew, = 4.92Xx10% cm/sec (ULD)w, <w<w, = 2.46 X 10° cm/sec

rg = 2.95%x107%7 sec? r, = 8.28X 10727 sec?

rg =20 ry = 1.13X107% sec?

& = 90K 0, = 108 K

0, = 208 K 0; = 319K

7} = 376 K

a = 2.0

5t = 1.96x10%sec™!

A = 240X 10~ sec?

By = 112X 1071 deg~*

Byy = 210107 deg~*

By = 2.50%x 10~ sec deg™*

By = 4.69%x1072* sec deg™*

Byr = 6.88x10~% sec deg™?

By, = 6.88Xx10~2* sec deg™?

| { |
"2 5 10 20 50 100 200 500 1000
Temperature , K

Fig. 1. Phonon conductivity of Ge in the temperature range 2— 1000 K. K is the transverse
phonon contribution and Ky the longitudinal phonon contribution. Solid line indicates cal-
culated values. Circles are experimental points
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found at temperatures beyond 500 K. These discrepancies are balanced by in-
cluding the role of four-phonon processes and the four-phonon scattering strength
is adjusted at 500 K. The analytical expressions reported in the present paper are
very useful to calculate an approximate value of the scattering strength, as well as
the phonon conductivity.

The constants and parameters used in the present analysis are listed in Table 4.
Using these constants and parameters, the phonon conductivity of Ge is calculated
‘in-the.entire temperature range 2— 1000 K by calculating the separate contributions
of the transverse and longitudinal phonons, and is shown in Fig. 1. The percentage

3
S

Normal processes

@
(=]

~
o
[

-
//Umklapp processes

Percentage contributions
3
[

8
T
~

0 / | | ! | |
200 400 600 800 1000
Temperature , K

Fig. 2. Percentage contributions of three-phonon N and U-processes towards three-phonon
scattering relaxation rate. Solid line is percentage of 73}, n and dotted line is percentage of

—1
T3phs U

contributions of the three-phonon N and U scattering relaxation rates towards
the three-phonon scattering relaxation rate are also calculated, to study the domi-
nating nature of one over the other in the temperature range 10—1000 K, and they
are shown in Fig. 2.

From Fig. 2,-it can be concluded that at low temperatures the contribution
of U-processes is negligibly small compared to that of N-processes, whereas the U
dominate over the N-processes at high temperatures. However, the contribution of
N-processes is not very small at high temperature. It is nearly 359 at 1000 K.
From Fig. 1, one can see that the agreement between the experimental and calcu-
lated values of the phonon conductivity is excellent in the entire temperature range
21000 K, whereas Verma et al. [30] could not get good agreement in the vicinity
of the conductivity maxima.

Discussion
The expression proposed for g = (By, + Bye ¥°7) - g(w)T™ shows very
good results at high as well as at low temperatures. At low temperatures 0/a T > 1,
which results in 75 = Tophn = Bng(@)T™ due to very small value of e~%°7,

J. Thermai Anal. 12, 1977



232 DUBEY, MISHO: LATTICE THERMAL CONDUCTIVITY

This shows that our proposed expression for 75, reduces at low temperature to an

expression for the three-phonon N-processes scattering relaxation rate i .
Thus, the proposed new expression indicates the dominating nature of N-processes
at low temperatures. At high temperatures, the percentage contribution of g} 1
is as high as 659 (at 1000 K), which reveals the dominating nature of U-processes
over N-processes. As far as intermediate temperatures are concerned, these can
be studied with the help of Fig. 2. Thus, for the first time, we have incorporated
the contribution of both N and U-processes in the entire temperature range, as
well as in the entire frequency range of the Brillouin Zone (0 to @,,,,), to calculate
the phenon conductivity of an insulator. The value of the temperature exponent
m is calculated for both modes, whereas Tiwari and Agrawal used equal values of
m for both polarization branches. From Fig. 1, it can be seen that at high tempera-
tures the entire heat is transported by transverse phonons alone, which is similar
to the previous findings of other workers. At the same time, it can also be seen
that the agreement between calculated and experimental values is excellent at
high as well as at low temperatures. The temperature exponent used in the proposed
expression also follows Guthrie’s limit [8, 35] for three-phonon scattering relaxa-

tion rates.
%
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RisuME — On a proposé la nouvelle expression 7ih = g(w)(Bx + Buye~**T)T™ qui con-

stitue une approximation nouvelle 3 la conductivité thermique des réseaux. On a calculé
ainsi, en incorporant cette expression, la conductivité thermique du réseau de germa-
nium dans tout lintervalle de températures compris entre 2 et 1000 K. Un bon accord a
été observé entre les valeurs calculées et expérimentales pour la conductivité des phonons
dans tout ’intervalle de températures étudié. On a également obtenu des expressions analyti-
ques pour le calcul de la valeur approchée de la conductivité thermique du réseau. Le réle
des processus 4 quatre phonons est également inclus dans la présente étude.

ZUSAMMENFASSUNG — Der neue Ausdruck 73} = g(w)(By + Bye=**1)T™ wird fir die
Drei-Phonon-Streuungs-Relaxationsgeschwindigkeit vorgeschlagen, welche Drei-Phonon-
Normal- und Umklapp-Prozesse beriicksichtigt. Daraus ergibt sich eine neue Annidherung
zur Wirmeleitfihigkeit von Gittern. Durch obigen Ausdruck wurde die Warmeleitfahigkeit
von Ge im Temperaturbereich von 2 bis 1000 K berechnet und eine gute Ubereinstimmung
der berechneten und Versuchswerte der Phononleitfihigkeit im untersuchten Temperatur-
bereich gefunden. Analytische Ausdriicke konnen auch fiir die Berechnung eines Niherungs-
wertes der Wirmeleitfahigkeit des Gitters erhalten werden. Die Rolle des Vier-Phonon-Vor-
ganges wird ebenfalls mit behandelt.

Pestome — TIpeNIOREHO HOBOE BBIPAXEHHE Tiph = g(w) (By + Bue™**)T™ mua ckopoct:
peTaxcamyd TPexOHOHHOTO PACCesHMSA, YHATEIBAs BKIAIL, 0GYCIIOBIEHHbIE TPEMS HOPMAJILHEI-
MHE (POHOHHEIMHE IPOLIECCAME H IPOLIECCaMH Ilepebpoca, YTo aeT HOBOE NPHOIIKEHNe IS pe-
ImeTo4HOM TepMHIeCKo# HposoAuMOocTH. C IOMOIUBIO 3TOTO BRIPaXeHHA OBUTa BBIYHCIECHA
PpelIeTOYHAs TEPMHAUECKas TPOBOIMMOCTE F¢PMaHHUA BO Beelt Temuepatypaoii ob6macta 2—1000K
¥ HaliJeHO XOpOLIee COBHAICHHE MeXKAY BBHIYACICHHBIME H JKCIEPHMEHTANEHBIMI 3HAYCHIAME
TepMIYEeCKOH ITIPOBOIMMOCTH BO Beell mccienoBaHHoM TemmepaTypHo# obmactu. IMosyuensr
TaKkKe aHAJATHYCCKHE BLIPAXKCHMS 11T BBIYMCIICHHS [PUOJIMKEHHOrO 3HAYeHWs DPEIIeTOYHON
TEpMUYECKOM MPOBOJUMOCTH. B HacTOAIIee H3yYeHNE BKIIOYEHA TAKXe POJIb YeTHIPEX(OHOHHEIX
[IPOLIECCOB.
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